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Abstract

In this paper, we proposed a new feature selection scheme, the incre-

mental forward feature selection, which is inspired by incremental reduced

support vector machines. In our method, a new feature will be added into

the current selected feature subset if it will bring in the most extra infor-

mation. We measure this information by using the distance between the

new feature vector and the column space spanned by current feature sub-

set. The incremental forward feature selection scheme can exclude highly

linear correlated features which provide redundant information and might
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degrade the efficiency of learning algorithms. We compared our method

with the weight score approach and the 1-norm support vector machine on

two well-known microarray gene expression data sets, the acute leukemia

and colon cancer data sets. These two data sets have a very few obser-

vations but huge number of genes. We applied the linear smooth support

vector machine to the feature subsets selected by these three schemes

respectively and obtained a slightly better classification results in the 1-

norm support vector machine and incremental forward feature selection.

Finally, we claimed that the rest of genes still contain some useful infor-

mation. We iteratively removed the previous selected features from the

data sets and repeated the feature selection and classification steps for

four rounds. The results show that there are many distinct feature sub-

sets that can provide enough information for classification tasks in these

two microarray gene expression data sets.

Keywords: 1-norm support vector machine, filter model, incremental forward

feature selection, weight score, wrapper model.

1 Introduction

In many data mining applications such as genome projects, text categorization,

and image retrieval (Yu & Liu, 2003), the data sets consist of large number of

features as well as a relative small number of samples. There are many irrelevant

and redundant features in observations of these data sets. For dealing with this

kind of data sets, the learning algorithms may generate a more complex model

and cause the overfitting problem (Kohavi & John, 1997). The performance of
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learning algorithms is degraded due to the number of features grows (Kohavi

& John, 1997; Yu & Liu, 2003). We call the phenomenon as the curse of

dimensionality (Cristianini & Shawe-Taylor, 2000).

The feature selection problem focuses on selecting a subset of original fea-

tures, such that a learning algorithm can generate a classifier via these selected

features without sacrificing the prediction accuracy. Through feature selection,

the noise and redundant features can be discarded according to some evaluation

criteria. Feature selection approaches can be grouped into two categories, filter

model and wrapper model (Kohavi & John, 1997). The filter model evaluates

the significance of features and then filters out uninformative features. Feature

selection is a stand-alone step before the learning algorithm is performed. It

totally ignores the effects of the selected features on the performance of the

learning algorithm used. Hence it can be treated as a preprocessing step. The

identical feature subset will be selected no matter what learning algorithms are

used in the learning tasks. By contrast, the wrapper model tries to choose the

best feature subset to use by taking the learning algorithm as part of the eval-

uation function (Kohavi & John, 1997). It considers the correlations between

features used and the underlying learning algorithm while performing feature

selection tasks. When applying the wrapper model into the learning tasks, it

not only takes the “goodness of fit” into account but also penalizes on the num-

ber of selected features. Thus, the wrapper model will select different (suitable)

feature subsets for different algorithms.

In this paper, we presented a new feature selection method, incremental for-

ward feature selection (IFFS) which is inspired by incremental reduced SVM

(IRSVM) (Lee, Lo, & Huang, 2003). We compared the IFFS with the weight
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score approach which is proposed in (Golub et al., 1999) as well as 1-norm sup-

port vector machine (SVM) (Fung & Mangasarian, 2003; Zhu, Rosset, Hastie,

& Tibshirani, 2003; Lee, Mangasarian, & Wolberg, 2003). The weight score

approach, a filter model, evaluates the variation of feature values in different

classes and can produce a simple ranking criterion. The 1-norm SVM and IFFS,

belong to the wrapper model, select features under the classification mechanism

by taking the linear classification model into account and select more suitable

feature subsets for the learning algorithm. They can select smaller feature sub-

sets than the weight score approach does and still have equal or even better

classification accuracy. We also test these three feature selection methods on

two microarray gene expression data sets, the acute leukemia data set (Golub

et al., 1999) as well as colon cancer data set (Alon et al., 1999). For comparing

different feature selection methods, we use the same classification method, lin-

ear smooth support vector machine (SSVM) (Lee & Mangasarian, 2001), in all

our experiments.

A word about our notations is given below. All vectors will be column

vectors unless otherwise specified or transposed to a row vector by a prime

superscript ′. The inner product of two vectors x, z ∈ Rn will be denoted by

x′z and the p-norm of x will be denoted by ‖x‖p. A column vector of ones of

arbitrary dimension will be denoted by 1. The base of the natural logarithm

will be denoted by e.

This paper is organized as follows. Section 2 gives an overview of filter model

for feature selection. In section 3, we describe the wrapper model for feature

selection. The experiments and numerical results for different feature selection

approaches are stated in section 4. Section 5 concludes the paper.
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2 Filter Model for Feature Selection

The filter model selects the informative features by ranking them according to a

criterion function. There are many criterion functions for scoring the importance

of features, such as mutual information (MI) (Joachims, 2002), chi-squared test

(χ2-test) (Joachims, 2002), Between-Within ratio (BW) (Dudoit, Fridlyand, &

Speed, 2002), Fisher criterion score (Bishop, 1995; Duda & Hart, 1973), and

weight score (Furey et al., 2000; Golub et al., 1999; Mukherjee et al., 1998;

Slonim, Tamayo, Mesirov, Golub, & Lander, 2000) approaches. These criterion

functions are designed to have large values if either the correlation between the

feature and class label is stronger or the differences between different classes in

the feature is bigger. These values are computed independently of the learning

algorithms. Once we have the values, we can filter out uninformative features

and then using the selected features in the learning algorithms. Thus the filter

model for feature selection can be treated as data preprocessing. We will only

consider the weight score method which is used in (Furey et al., 2000; Golub

et al., 1999; Mukherjee et al., 1998; Slonim et al., 2000) for microarray gene

expression data analysis as follows.

In choosing the informative features (genes), this approach looks for two

properties (Slonim et al., 2000):

• The expression values of an informative gene in one class should be quite

different from its expression values in the other.

• In addition to the differences in expression values that are demonstrated by

the class distinction, the expression values of an informative gene should

be as little variation as possible in the same class.
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In order to realize these two properties the weight score of jth feature is

defined as the ratio between the difference of the means of expression levels and

the sum of standard deviations in two classes:

wj =
|µ+

j − µ−j |
σ+

j + σ−j
, (1)

where µj and σj are the mean and standard deviation of jth feature for training

samples of class A+ (superscripted by +) or class A− (superscripted by −).

Based on the definition of weight score, the jth gene conforms to be an

informative gene, the value of wj should be greater than genes that do not

conform. An informative gene will have a bigger |µ+
j − µ−j | which measures

the difference between different classes and a smaller (σ+
j + σ−j ). This criterion

function is similar to the Between-Within ratio (BW) and Fisher criterion score

approaches which select the informative genes with the largest ratios of between-

groups to within-groups sum of squares. We illustrate the weight score idea by

a simple example which consists of three genes expression values from the colon

cancer data set. Twenty samples are randomly selected, samples 1-10 belong

to Tumor class (class 1) and samples 11-20 belong to Normal (class 2). We

summarize this example in Figure 1 and Figure 2. It is obvious that Gene 3

has the highest weight score value. The significance ranking of these three genes

in decreasing order will be Gene 3, Gene 2 and Gene 1.

After ranking features, users can set a threshold to select the informative fea-

tures whose weight scores exceed the threshold. We know that the weight scores

were computed independently without taking the interdependence of features

into account. Two highly linear correlated features might be selected together.

For example, if a data set contains two features, the diameter and radius of cell

respectively. These two features will have the same weight score because the
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Figure 1: There are three genes expression data, each gene contains 20 sam-

ples which are randomly selected from the colon cancer data set samples

1-10 belong to Tumor (class 1) and 11-20 belong to Normal (class 2).

Figure 2: For each gene and class, the dark horizontal lines illustrate within-

class means of gene expression values (i.e., µ+
j and µ−j , j ∈ {1, 2, 3})and

each box shows the region of one standard deviation (i.e., µ+
j ± σ+

j and

µ−j ± σ−j , j ∈ {1, 2, 3}).
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diameter is double of the radius of cell. Hence the two features will be chosen or

not at the same time. In some cases, the highly linear correlated features will

degrade the performance of classification algorithms. For instance, the clas-

sification accuracy of a Näıve Bayesian classifier is hurt more by conditional

dependence between features than the presence of irrelevant features (Kohavi &

John, 1998; Langley & Sage, 1994). Besides, if a linear classifier such as SVM

classifier is used for classification problems, highly linear correlated features

will provide redundant information and may degrade the efficiency of learning

algorithms.

3 Wrapper Model for Feature Selection

The wrapper model selects feature subsets using the learning algorithm itself

as part of the evaluation function (Kohavi & John, 1997). In this section, we

introduce two feature selection methods, the 1-norm SVM and IFFS. These

two methods take the linear classification model into account while performing

feature selection. Hence they may exclude highly linear related features.

3.1 1-norm SVM for Feature Selection

Consider the problem of classifying points into two classes, A− and A+. We are

given a training data set {(xi, yi)}m
i=1, where xi ∈ X ⊂ Rn is an input vector

and yi ∈ {−1, 1} is a class label, indicating one of the two classes, A− and

A+, to which the input point belongs. We represent these data points by an

m× n matrix A, where the ith row Ai corresponds to the ith input data point

and the jth column Aj represents the jth feature expression vector. We use an

m × m diagonal matrix D, Dii = yi to specify the membership of each input
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point. The main goal of the classification problem is to find a classifier that can

predict correctly the unseen class labels for new data inputs. It can be achieved

by constructing a linear or nonlinear separating surface, f(x) = 0. We classify a

test point x to A+ if f(x) ≥ 0, otherwise, to A−. For finding the optimal linear

separating hyperplane in the form f(x) = w′x+ b, the standard SVM solves the

following problem for some C > 0 (Vapnik, 1995; Cortes & Vapnik, 1995):

min
(w,b,ξ)∈Rn+1+m

C1′ξ + 1
2‖w‖22

s.t. D(Aw + 1b) + ξ ≥ 1,

ξ ≥ 0,

(2)

where the components of vector ξ ∈ Rm in problem (2) are slack variables.

If we replace the regularization term 1
2‖w‖22 in the objective function (2) by

‖w‖1, we can get the 1-norm SVM formulation as follows:

min
(w,b,ξ)∈Rn+1+m

C1′ξ + ‖w‖1

s.t. D(Aw + 1b) + ξ ≥ 1,

ξ ≥ 0.

(3)

The objective function in (3) is a piecewise linear function and can be refor-

mulated as a linear programming problem:

min
(w,s,b,ξ)∈R2n+1+m

C1′ξ + 1′s

s.t. D(Aw + 1b) + ξ ≥ 1,

−s ≤ w ≤ s,

ξ ≥ 0,

(4)

where s is the upper bound of the absolute value of w componentwise and

the sum of elements of s, 1′s, is equal to ‖w‖1 at the optimal solution of (4).

We note that the formulation of 1-norm SVM is equivalent to least absolute

9



shrinkage and selection operator (LASSO) (Tibshirani, 1996; Osborne, Presnell,

& Turlach, 2000). The 1-norm SVM can generate a very sparse solution w, thus

it is a very useful tool for feature selection. The solution sparsity implies that the

separating hyperplane f(x) = w′x + b depends on very few input features when

a linear classifier is used. Hence the 1-norm SVM can significantly suppress

the features, especially for redundant noise features or highly linear correlated

features. (Lee et al., 2003; Fung & Mangasarian, 2003; Zhu et al., 2003). We

describe how to use the 1-norm SVM for feature selection below.

We start with finding the optimal solution (w∗, b∗) of the 1-norm SVM model

(3) by all features. Because the solution w∗ is very sparse, the 1-norm SVM

can discard the jth feature if the corresponding weight w∗j is very close to 0. By

contrast, the larger weight value w∗j means that the corresponding jth feature

is more important for discriminating these two classes data. There are several

strategies to remove the unimportant features. For instance, we may start with

tuning a small value of criterion parameter δ > 0 such as 10−5. When the corre-

sponding weight value
∣∣w∗j

∣∣ < δ, we will remove the jth feature. Then, the rest

of features are used to rebuild a classifier. We repeat tuning the criterion δ in-

creasingly until any further elimination will increase the test error dramatically.

We also can rank the weight value |w∗j | descending and retain the top k features.

The value k may also be tuned decreasingly until the error is increased.

3.2 Incremental Forward Feature Selection (IFFS)

In this subsection, we proposed a novel feature selection method, the Incre-

mental Forward Feature Selection (IFFS) which is inspired by the key idea of

IRSVM (Lee et al., 2003). The intuition behind this method is that a new
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feature will be added into the current feature subset if it will bring in the most

extra information. We measure the extra information for a feature using the

distance between this new feature vector and the column space spanned by cur-

rent feature subset. This distance can be computed by solving a least squares

problem. The feature with the farthest distance will be added into the current

feature subset. Once the most informative feature is added, the features in the

current feature subset are used to rebuild a discriminant model. We repeat this

procedure until any further addition does not decrease the test error by the new

generated model.

However, it is time-consuming for finding the most informative feature from

a large number of features. Hence we may also use another mechanism to add

more informative features into the feature subset. We first set a threshold δ > 0

such as 10. Please note that the value of δ should not be too small. When the

value rj , the distance between jth feature vector and the column space spanned

by current selected features, is greater than δ, we add the jth feature into the

feature subset. We repeat these steps until there is no feature can be added to

the current feature subset. Once the procedure is stopped for a certain δ, the

features in the current feature subset are used to reconstruct a classifier. We

repeat this procedure with setting the threshold δ decreasingly until any further

addition does not decrease the test error by the new generated classifier. We

describe our IFFS algorithm in Table 1.

The initial selected feature subset can be generated by expert’s input if it

is available. Otherwise, we will use the feature with the largest weight score

defined in (1).
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Algorithm: Incremental Forward Feature Selection
Input:
Sinitial // The Initial index set of selected features

Output:
Sfinal // The final index set of selected features
Model // The final discriminant model

(1) Let S = Sinitial.
(2) Set a proper threshold δ > 0.
(3) Let AS ∈ Rm×|S| be a submatrix of A with the corresponding

columns in the selected feature index set S, where |S| is the car-
dinality of S.

(4) Choose j ∈ {1, 2, . . . , n} \ S and compute the distance rj from the
feature vector Aj to the column space of AS . This distance can be
computed as rj = ‖ASβ∗−Aj‖2, where β∗ is the optimal solution of
the least squares problem minβ∈R|S| ‖ASβ −Aj‖22.

(5) If the distance rj > δ, then S = S ∪ {j}. That is, we add the jth

feature into the selected feature index set S.
(6) Update the matrix AS .
(7) Repeat Step (4) ∼ (6) until there is no feature can be added to the

current selected feature index set S.
(8) Reconstruct a classifier using the current selected feature index set S

and compute the test error by the classifier.
(9) Repeat Step (2) ∼ (8) by setting the threshold δ decreasingly until

the test error is not decreasing.
(10) Let Sfinal = S and the Model be the final classifier which is con-

structed by Step (8).
(11) Return Sfinal and Model.

Table 1: The IFFS algorithm

4 Experimental Setting and Numerical Results

All our experiments were performed on a personal computer, which utilizes a

2.0 GHz Intel Pentium IV processor and 512 megabytes of RAM. This com-

puter runs on Windows 2000 professional operating system, with MATLAB 6.0

installed. We tested our IFFS algorithm and compared with the weight score

approach as well as the 1-norm SVM on two well-known microarray gene ex-
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pression data sets, the acute leukemia and colon cancer data sets, respectively

(Golub et al., 1999; Alon et al., 1999).

4.1 Acute Leukemia Data Set

In the acute leukemia data set (Golub et al., 1999), there are 25 acute myeloid

leukemia (AML) and 47 acute lymphoblastic leukemia (ALL) samples which are

taken from 72 patients. Each sample has 7,129 genes obtained from microarray

experiments. In ALL class, the 47 samples are further grouped into 38 B-lineage

cell ALL (B-Cell ALL) and 9 T-lineage cell ALL (T-Cell ALL) samples. The

acute leukemia data set contains a training set and an independent test set.

The training set has 38 samples which includes 11 AML and 27 ALL samples

(19 B-Cell, 8 T-Cell). There are 34 samples in the test set which consists of 14

AML and 20 ALL samples (19 B-Cell, 1 T-Cell). The summary of this data set

is shown in Table 2.

Since the acute leukemia data set contains three categories, we convert this

trinary classification problem into two binary classification problems in our ex-

periments. Figure 3 shows the classification flowchart. In Figure 3, the two

diamonds represent two classifiers. One of them is used to distinguish AML

from ALL and another is used to classify B-Cell ALL and T-Cell ALL. The two

ellipses stand for two gene selection steps. They can be performed by any feature

selection method. Because the first gene subset is just chosen for discriminating

AML from ALL and both T-cell and B-cell are the subclasses of ALL, intuitively

T-cell and B-cell should have very closed gene expression levels in this selected

gene subset. We cannot use this selected gene subset to distinguish T-cell from

B-cell well. Thus we need the second gene selection step to choose a new gene
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Acute Leukemia Data Set (72× 7129)
Training Test Total

AML 11 14 25
B-Cell ALL 19 19 38
T-Cell ALL 8 1 9

Total 38 34 72
# of genes 7129

Table 2: Summary of the acute leukemia microarray gene expression data

set

AML ALL

T-CellB-Cell

examples

Gene

Selection I

SSVM

(AML/ALL)

AML
Gene

Selection II

SSVM

(B/T-Cell)

B-Cell

ALL

T-Cell

ALL

Figure 3: Classification flowchart for the acute leukemia data set

subset to discriminate them.

4.2 Colon Cancer Data Set

Microarray gene expression values for 22 normal and 40 colon cancer tissues

are collected. Each sample has 6,500 genes which are obtained from microarray

experiments. The colon cancer data set (Alon et al., 1999) collected 2,000 genes

with the highest minimal intensity across the 62 tissues.

In (Weston, Elisseeff, Schölkopf, & Tipping, 2003; Weston et al., 2001), the
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examples

Gene

SSVM

Selection

Figure 4: Classification flowchart for the colon cancer data set

authors divided the data set into a training set of 50 samples and a test set

of 12 samples in 500 bootstrap trials. We followed this scale of test set and

performed stratified five-fold cross-validation in our experiments. For each fold,

we randomly selected 8 tumor as well as 4 normal samples for a test set and

the rest part for a training set. The colon cancer data set contains only tumor

and normal samples. Hence it is a binary classification problem. We do just

need one feature selection step and use the selected genes to construct suitable

classifiers. The classification flowchart for the colon cancer data set is illustrated

in Figure 4.

4.3 Numerical Results and Comparisons

We first concentrated on comparing the performance of our IFFS method with

other feature selection approaches. For each data set, we applied three different

feature selection schemes to select the most informative genes based on the

entire data set. Then we use the selected feature subsets to construct the linear

SSVM classifiers (Lee & Mangasarian, 2001). We evaluated the performance
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Acute Leukemia Data Set (72× 7129)
(Tested by independent test samples)

Method ALL/AML B-Cell/T-Cell
# of Genes Errors # of Genes Errors

Golub 50 2 N/A N/A
Weston (2001) 20 0 5 0

Guyon 8 0 N/A N/A
Zhu 17 2 N/A N/A

Weight Score Approach 10 1 20 0
1-norm SVM 6 0 8 0

IFFS 14 0 9 0
Golub: (Golub et al., 1999)
Weston (2001): (Weston et al., 2001)
Guyon: (Guyon, Watson, Barnhill, & Vapnik, 2002)
Zhu: (Zhu et al., 2003)
N/A: Denote not available results

Table 3: Numerical results of the acute leukemia data set

of different feature selection schemes by counting the numbers of misclassified

samples of the linear SSVM classifiers which generated by different selected

feature subsets.

In the acute leukemia data set, we reported the numbers of the selected genes

and the misclassified samples for different feature selection schemes in Table 3

and included previous results done by (Golub et al., 1999; Weston et al., 2001;

Guyon et al., 2002; Zhu et al., 2003) as well for comparison purpose. For

discriminating AML samples from ALL samples, the 1-norm SVM and IFFS

selected 6 genes and 14 genes, respectively, and the SSVM classifiers generated

by these two selected gene subsets can separate AML and ALL samples well in

the independent test set. However, the weight score approach select 10 genes

and has 1 misclassified sample. For distinguishing T-Cell ALL samples from B-

Cell ALL samples, the weight score approach, 1-norm SVM, and IFFS selected

20 genes, 6 genes, and 14 genes, respectively. No matter which feature selection

scheme is used for constructing the SSVM classifiers, there is no misclassified
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Colon Cancer Data Set (62× 2000)
(Tested by stratified five-fold cross-validation)

Method Tumor/Normal
# of Genes Errors

Weston (2001) 15 1.5
Guyon 8 3

Weston (2003) 20 1.7
Weight Score Approach 20 1.6

1-norm SVM 8 1.4
IFFS 5 1.4

Weston (2001): (Weston et al., 2001)
Guyon: (Guyon et al., 2002)
Weston (2003): (Weston et al., 2003)

Table 4: Numerical results of the colon cancer data set

sample occurred in the independent test set.

In the colon cancer data set, the 1-norm SVM and IFFS selected 8 genes and

5 genes, respectively, and the SSVM classifiers generated by these two selected

gene subsets have 1.4 misclassified samples in stratified five-fold cross-validation

test sets averages. However, the weight score approach select 20 genes and has

1.6 misclassified samples. We summarized these results in Table 4 and included

previous results done by (Weston et al., 2001; Guyon et al., 2002; Weston et al.,

2003) as well for comparison purpose.

Moreover, we want to explore the correlation coefficients between each pair of

selected genes. Table 5 showed the statistic results of the correlation coefficients

between each pair of selected genes via three different feature selection methods

where the Max Corr, Min Corr, and Avg Corr represented the maximum, mini-

mum, and average values of correlation coefficients, respectively. The numerical

results demonstrate that the values under the IFFS and 1-norm SVM are obvi-

ously smaller than values under the weight score approach in all class pairs. It

indicates that genes selected by the IFFS and 1-norm SVM are mutually less
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Leukemia Data Colon Data

Gene Selection Methods ALL/AML B/T-Cell ALL Tumor/Normal

Min Corr 0.512 0.583 0.143

Weight Score Approach Max Corr 0.713 0.799 0.695

Avg Corr 0.637 0.688 0.550

Min Corr 0.236 0.264 0.284

1-norm SVM Max Corr 0.394 0.608 0.458

Avg Corr 0.343 0.497 0.371

Min Corr 0.416 0.273 0.168

IFFS Max Corr 0.537 0.602 0.304

Avg Corr 0.487 0.451 0.223

Table 5: Summary of correlation coefficients between selected genes

correlated than those selected by the weight score approach. Therefore, IFFS

and 1-norm SVM gene selection methods may avoid selecting highly linear cor-

related genes which provide redundant information and degrade the efficiency

of learning algorithms.

Finally, we argue that the rest of genes still contain some useful information

for discriminant purpose. In order to support this argument, we remove the se-

lected genes from the data set and perform the previous experiments repeatedly

until the classification ability of SSVM classifiers degrade drastically. Table 6

illustrated the results of performing the above procedure for four rounds. The

results showed that we can remove about 100 genes from the acute leukemia

data set and about 50 genes from the colon cancer data set without sacrificing

the classification ability. It means that there are more than one gene subset

can be used to construct an accurate SSVM classifier in each data set no matter

which feature selection approach is used. These observations evidence that there

are highly related genes in a microarray gene expression data set and some of

them can be replaced by others. In general, we need select more genes for con-

structing a classifier with similar accuracy when the previous selected genes are
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Genes Are Selected by Leukemia Data Colon Data
Weight Score Approach ALL/AML B/T-Cell ALL Tumor/Normal

# of Genes 10 20 20

Round 1 Errors 1 0 1.6

# of Genes 20 20 20

Round 2 Errors 1 0 1.4

# of Genes 30 20 30

Round 3 Errors 1 0 2.4

# of Genes 40 30 40

Round 4 Errors 1 0 3.2

Genes Are Selected by Leukemia Data Colon Data
1-norm SVM ALL/AML B/T-Cell ALL Tumor/Normal

# of Genes 6 8 8

Round 1 Errors 0 0 1.4

# of Genes 11 9 19

Round 2 Errors 0 0 1.6

# of Genes 15 8 24

Round 3 Errors 0 0 1.6

# of Genes 18 8 25

Round 4 Errors 1 0 2

Genes Are Selected by Leukemia Data Colon Data
IFFS ALL/AML B/T-Cell ALL Tumor/Normal

# of Genes 14 9 5

Round 1 Errors 0 0 1.4

# of Genes 14 12 6

Round 2 Errors 1 1 1.4

# of Genes 11 6 5

Round 3 Errors 0 0 1.6

# of Genes 11 8 5

Round 4 Errors 0 0 2

Round 1: Select genes from the original data set
Round 2: Select genes from the remaining genes of Round 1
Round 3: Select genes from the remaining genes of Round 2
Round 4: Select genes from the remaining genes of Round 3

Table 6: Number of errors made by SSVM when selected genes are itera-

tively removed

removed continuously. However, for each round, the number of genes selected

by IFFS does not increase dramatically. Besides, the IFFS and 1-norm SVM

still select fewer genes than weight score approach for generating an accurate

SSVM classifier at each round. These numerical outcomes further demonstrated

that the IFFS and 1-norm SVM may exclude highly linear correlated genes.
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5 Conclusions

In this paper, we presented a new feature selection scheme, IFFS, which be-

longs to the forward feature selection wrapper model. A new feature will be

added into the current feature subset if it will bring in the most extra infor-

mation which is measured by the distance between this new feature vector and

the column space spanned by current feature subset. We tested the IFFS and

compared with the weight score approach as well as 1-norm SVM on two famous

microarray gene expression data sets, the acute leukemia and colon cancer data

sets. Our experimental results showed that the IFFS outperforms the weight

score approach and has the same performances as the 1-norm SVM in the num-

bers of the selected genes and the misclassified samples. The IFFS can exclude

highly linear correlated features. The correlation coefficients between each pair

of selected genes support this characteristic. Finally, we argue that the rest of

genes still contain some useful information. The numerical results demonstrated

that we can remove the previous selected genes from the data sets and select

another set of genes to construct a new SSVM classifier without sacrificing the

prediction ability. The IFFS scheme is a very useful tool for feature selection in

particular; there are so many redundant and highly linear correlated features.
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